DEPARTMENT OF MECHANICAL ENGINEERING

LESSON PLAN

SECTION - A & B

6TH SEMESTER

SUBJECT - INDUSTRIAL ROBOTICS & AUTOMATION

SESSION- 2022 - 2023

MONTH	NO. OF	TOPICS TO BE COVERED
	PERIODS	
	AVAILABLE	
FEB	14	1.0 Fundamentals of Robotics: 1.1 Definition; Robot anatomy (parts) and its working.
		1.2 Robot Components: Manipulator, End effectors; Construction of links, Types of
		joints. 1.3 Classification of robots; Cartesian, Cylindrical, Spherical, Scara, Vertical
		articulated. 1.4 Structural Characteristics of robots; Mechanical rigidity; Effects of
		structure on control work envelope and work Volume. 1.5 Robot work Volumes,
		comparison. 1.6 Advantages and disadvantages of robots.
		2.0 Robotic Drive System and Controller: 2.1 Actuators; Hydraulic, Pneumatic and
		Electrical drives; Linear actuator; Rotary drives. 2.2 AC servo motor; DC servo motors
		and Stepper motors; Conversion between linear and rotary motion. 2.3 Feedback
		devices; Potentiometers; Optical encoders; DC tachometers. 2.4 Robot controller; Level
		of Controller; Open loop and Closed loop controller. 2.5 Microprocessor based control
		system; Robot path control: Point to point, Continuous path control and Sensor based
		path control; Controller programming.
MARCH	23	3.0 Sensors: 3.1 Requirements of a sensor. 3.2 Principles and Applications of the
		following types of sensors: Position sensors (Encoders, Resolvers, Piezo Electric); Range
		sensors (Triangulation Principle, Structured lighting approach). 3.3 Proximity sensing;
		Force and torque sensing.
		4.0 Introduction to Machine Vision: 4.1 Robot vision system (scanning and digitizing
		image data); Image processing and analysis. 4.2 Cameras (Acquisition of images);
		Videocon camera (Working principle & construction). 4.3 Applications of Robot vision
		system: Inspection, Identification, Navigation & serving.
APR	23	5.0 Robot kinematics and Robot Programming: 5.1 Forward Kinematics; Inverse
		Kinematics and Differences. 5.2 Forward Kinematics and Reverse Kinematics 5.3 Teach
		Pendant Programming; Lead through programming; Robot programming Languages;
		VAL Programming. 5.4 Motion Commands; Sensor Commands; End effecter commands;
		and Simple programs.
		6.0 Automation & Industrial Applications: 6.1 Basic elements of automated system,
		advanced automation functions, levels of automation. 6.2 Application of robots in
		machining; welding; assembly and material handling.